PROGRAM LINEAR

Assalamualaikum wr.wb


Nama : Adhisty Aristya Nilam (1)

Kelas  : XI IPS 2

 

PROGRAM LINEAR

Program linear adalah suatu metode penentuan nilai optimum dari suatu persoalan linear. Nilai optimum (maksimal atau minimum) diperoleh dari nilai dalam suatu himpunan penyelesaiaan persoalan linear. Di dalam persoalan linear terdapat fungsi linear yang bisa disebut sebagai fungsi objektif. Persyaratan, batasan, dan kendala dalam persoalan linear merupakan sistem pertidaksamaan linear.

 

Model Matematika Program Linear

Persoalan dalam program linear yang masih dinyatakan dalam kalimat-kalimat pernyataan umum, kemudian diubah kedalam model matematika. Model matematika merupakan pernyataan yang menggunakan peubah dan notasi matematika.

Sebagai ilustrasi, produsen sepatu membuat 2 model sepatu menggunakan 2 bahan yang berbeda. Komposisi model pertama terdiri dari 200 gr bahan pertama dan 150 gr bahan kedua. Sedangkan komposisi model kedua terdiri dari 180 gr bahan pertama dan 170 gr bahan kedua. Persediaan di gudang bahan pertama 72 kg dan bahan kedua 64 kg. Harga model pertama adalah Rp. 500.000,00 dan model kedua Rp. 400.000,00. Jika disimpulkan/disederhanakan dalam bentuk tabel menjadi berikut:

Dengan peubah dari jumlah optimal model 1 adalah x dan model 2 adalah y, dan hasil penjualan optimal adalah f(x, y) = 500.000x + 400.000y. Dengan syarat:

  • Jumlah maksimal bahan 1 adalah 72.000 gr, maka 200x + 180y ≤ 72.000.
  • Jumlah maksimal bahan 2 adalah 64.000 gr, maka 150x + 170y ≤ 64.000
  • Masing-masing model harus terbuat.

Model matematika untuk mendapat jumlah penjualan yang maksimum adalah:

Maksimum f(x, y) = 500.000x + 400.000y

Syarat:

  • 200x + 180y ≤ 72.000
  • 150x + 170y ≤ 64.000
  • x ≥ 0
  • y ≥ 0

 

Nilai Optimum Fungsi Objektif

Fungsi objektif merupakan fungsi linear dan batasan-batasan pertidaksamaan linear yang memiliki himpunan penyelesaian. Himpunan penyelesaian yang ada merupakan titik-titik dalam diagram cartesius yang jika koordinatnya disubstitusikan kedalam fungsi linear dapat memenuhi persyaratan yang ditentukan.

Nilai optimum fungsi objektif dari suatu persoalan linear dapat ditentukan dengan metode grafik. Dengan melihat grafik dari fungsi objektif dan batasan-batasannya dapat ditentukan letak titik yang menjadi nilai optimum. Langkah-langkahnya sebagai berikut :

  • Menggambar himpunan penyelesaian dari semua batasan syarat yang ada di cartesius.
  • Menentukan titik-titik ekstrim yang merupakan perpotongan garis batasan dengan garis batasan yang lainnya. Titik-titik ekstrim tersebut merupakan himpunan penyelesaian dari batasannya dan memiliki kemungkinan besar membuat fungsi menjadi optimum.
  • Menyelidiki nilai optimum fungsi objektif dengan dua acara yaitu :

a.      Menggunakan garis selidik

b.      Membandingkan nilai fungsi objektif tiap titik ekstrim

 

 

a.      Menggunakan Garis Selidik

Garis selidik diperoleh dari fungsi objektif f(x, y) = ax + by dimana garis selidiknya adalah

ax + by = Z

Nilai Z diberikan sembarang nilai. Garis ini dibuat setelah grafik himpunan penyelesaian pertidaksamaan dibuat. Garis selidik awal dibuat di area himpunan penyelesaian awal. Kemudian dibuat garis-garis yang sejajar dengan garis selidik awal. Berikut untuk mempermudah penyelidikian nilai fungsi optimum:

Cara 1 (syarat a > 0)

  • Jika maksimum, maka dibuat garis yang sejajar garis selidik awal sehingga membuat himpunan penyelesaian berada di kiri garis tersebut. Titik yang dilalui garis tersebut adalah titik maksimum.

Jika minimum, maka dibuat garis yang sejajar garis selidik awal sehingga membuat himpunan penyelesaian berada di kanan garis tersebut. Titik yang dilalui garis tersebut adalah titik minimum.

Cara 2 (syarat b > 0)

  • Jika maksimum, maka dibuat garis yang sejajar garis selidik awal sehingga membuat himpunan penyelesaian berada di bawah garis tersebut. Titik yang dilalui garis tersebut adalah titik maksimum.
  • Jika minimum, maka dibuat garis yang sejajar garis selidik awal sehingga membuat himpunan penyelesaian berada di atas garis tersebut. Titik yang dilalui garis tersebut adalah titik minimum.

Untuk nilai a < 0 dan b < 0 berlaku kebalikan dari kedua cara yang dijelaskan di atas.

 

b.      Membandingkan Nilai Fungsi Tiap Titik Ekstrim

Menyelidiki nilai optimum dari fungsi objektif juga dapat dilakukan dengan terlebih dahulu menentukan titik-titik potong dari garis-garis batas yang ada. Titik-titip potong tersebut merupakan nilai ekstrim yang berpotensi memiliki nilai maksimum di salah satu titiknya.

Berdasarkan titik-titik tersebut ditentukan nilai masing-masing fungsinya, kemudian dibandingkan. Nilai terbesar merupakan nilai maksimum dan nilai terkecil merupakan nilai minimum.


Contoh soal dan Pembahasan :

1.    Nilai maksimum f(x, y) = 5x + 4y yang memenuhi pertidaksamaan x + y ≤ 8, x + 2y ≤ 12, x ≥ 0, dan y ≥ 0 adalah ...
a.    24
b.    32
c.    36
d.    40
e.    60
PEMBAHASAN:
-    x + y ≤ 8
ketika x = 0, maka y = 8 .... (0, 8)
ketika y = 0, maka x = 8 .... (8, 0)
-    x + 2y ≤ 12
ketika x = 0, maka y = 6 .... (0, 6)
ketika y = 0, maka x = 12 .... (12, 0)
Sehingga, grafik dari pertidak samaan di atas adalah:

Kita cari dulu titik B, yaitu titik potong dua buah garis, yaitu:

subtitusikan y = 4 dalam x + y = 8
x + 4 = 8
x = 4 .... (4, 4)
Jadi, nilai fungsi obyektifnya adalah:
f(x, y) = 5x + 4y
-    titik A (0, 6)
      5x + 4y = 5.0 + 4.6 = 24
-    titik B (4, 4)
      5x + 4y = 5.4 + 4.4 = 20 + 16 = 36
-    titik C (8, 0)
      5x + 4y = 5.8 + 4.0 = 40
Jadi, nilai maksimumnya adalah 40.
JAWABAN: D

2.    Nilai minimum fungsi obyektif  f(x, y) = 3x + 2y dari daerah yang diarsir pada gambar adalah  ...



a.    4
b.    6
c.    7
d.    8
e.    9
PEMBAHASAN:
Perhatikan gambar berikut :
rumus persamaan garis yang melalui titik (0, a) dan (b, 0) adalah: ax + by = a.b, maka:
-    Persamaan garis p = 4x + 2y = 4.2 = 4x + 2y = 8 = 2x + y = 4
-    Persamaan garis q = 3x + 3y = 3.3 = 3x + 3y = 9 = x + y = 3
Selanjutnya, kita cari titik potong garis p dan q, yaitu di titik B:

subtitusikan x = 1 dalam x + y =3
1 + y = 3
y = 2 .... B(1, 2)
kita cari nilai dari fungsi obyektif  f(x, y) = 3x + 2y:
-    Titik A (0, 4)
     3x + 2y = 3.0 + 2.4 = 8
-    Titik B (1, 2)
      3x + 2y = 3.1 + 2.2 = 7
-    Titik C (3, 0)
      3x + 2y = 3.3 + 2.0 = 9
Jadi, nilai minimumnya adalah 7
JAWABAN: C

3.    Daerah yang merupakan himpunan penyelesaian dari pertidaksamaan 2x + 3y ≤ 12, 4x + y ≥ 10, x ≥ 0, y ≥ 0 adalah ...

a.    I
b.    II
c.    III
d.    IV
e.    I dan III
PEMBAHASAN:
-    Daerah hasil 2x + 3y ≤ 12 adalah area II dan III
-    Daerah hasil  4x + y ≥ 10 adalah area III dan IV
Maka, yang mencakup keduanya adalah area nomor III
JAWABAN: C

4.    Seorang tukang jahit akan membuat pakaian model A dan model B. Model A memerlukan 1 m kain polos dan 1,5 m kain bergaris. Model B memerlukan 2 m kain polos dan 0,5 m kain bergaris. Persediaan kain polos 20 m dan bergaris 10 m. Banyaknya total pakaian jadi akan maksimal jika banyaknya model A dan model B masing-masing...
a.    7 dan 8
b.    8 dan 6
c.    6 dan 4
d.    5 dan 9
e.    4 dan 8
PEMBAHASAN:
Dari soal dapat diresume dalam tabel berikut :

Model matematika yang dapat dibentuk:
x + 2y ≤ 20
1,5x + 0,5 y ≤ 10 atau 15x + 5y ≤ 100
Kita cari titik potong kedua garis tersebut:
subtitusikan x = 4 dalam persamaan x + 2y = 20
4 + 2y = 20
2y = 16
y = 8
maka, banyak model A = 4 dan model B = 8
JAWABAN: E

5.    Daerah mana yang diarsir di bawah ini adalah daerah penyelesaian suatu sistem pertidaksamaan. Nilai maksimum fungsi objektif (3x + 5y) pada daerah penyelesaian tersebut ...

a.    30
b.    26
c.    24
d.    21
e.    18
PEMBAHASAN:
Perhatikan gambar:

-    Persamaan garis p = 6x + 4y = 24 atau 3x + 2y = 12
-    Persamaan garis q = 4x + 6y = 24 atau 2x + 3y = 12
Titik potong garis p dan q adalah:

subtitusikan y = 12/5 dalam 2x + 3y = 12:
2x + 3.12/5 = 12
2x = 12 – 36/5
2x = 60/5 – 36/5
2x = 24/5
x = 24/10 = 12/5 .... titik B (12/5, 12/5)
Nilai dari fungsi obyektif  3x + 5y adalah:
-    Titik A (0, 6)
      3x + 5y = 3.0 + 5. 6 = 30
-    Titik B (12/5, 12/5)
      3x + 5y = 3.12/5 + 5.12/5 = 36/5 + 60/5 = 96/5 = 19,2
-    Titik C (6, 0)
      3x + 5y = 3.6 + 5.0 = 18
Jadi, nilai minimumnya adalah 18
JAWABAN: E

6.    Nilai maksimum dari z = -3x + 2y yang memenuhi syarat 3x + y ≤ 9, 5x + 4y ≥ 20, x ≥ 0 adalah ...
a.    10
b.    14
c.    18
d.    20
e.    24
PEMBAHASAN:
-    3x + y ≤ 9
Jika x = 0, maka y = 9 .... (0, 9)
Jika y = 0, maka x = 3 .... (3, 0)
-    5x + 4y ≥ 20
Jika x = 0, maka y =5 ..... (0, 5)
Jika y = 0, maka x = 4 .... (4, 0)
Kita cari daerah hasilya dengan menggambarnya:
Kita cari dulu titik potong kedua garis di titik B:
subtitusikan x = 16/7 dalam 3x + y = 9
3.16/7 + y = 9
48/7 + y = 9
y = 9 – 48/7
y = 63/7 – 48/7
y = 15/7 ... titik B (16/7, 15/7)
Kita cari nilai dari fungsi obyektif  z = -3x + 2y:
-    Pada titik A (0, 9)
      -3x + 2y = -3.0 + 2.9 = 18
-    Pada titik B (16/7, 15/7)
     -3x + 2y = -3.16/7 + 2.15/7 = -48/7 + 30/7 = -18/7
-    Pada titik C (0, 5)
     -3x + 2y = -3.0 + 2.2 = 4
Jadi, nilai maksimumnya adalah 18.
JAWABAN: C

7.    Dalam sistem pertidaksamaan: 2y ≥ x : y ≤ 2x; 2y + x ≤ 20; x + y ≥ 9. Nilai maksimum untuk 3y – x dicapai di titik ...

a.    P
b.    Q
c.    R
d.    S
e.    T
PEMBAHASAN:
Kita cari dulu titik potong-titik potong pada soal di atas:
-    Titik P
P adalah perpotongan dari x + y = 9 dan 2y = x, maka subtitusikan saja:
2y + y = 9
3y = 9
y = 3 maka x = 2y = 6 ... titik P (6, 3)
Nilai obyektifnya: 3y – x = 3.3 – 6 = 3
-    Titik Q
Q adalah perpotongan dari x + y = 9 dan y = 2x, maka subtitusikan saja:
x + 2x = 9
3x = 9
x =3 dan y = 2x = 6 ... titik Q(3, 6)
Nilai obyektifnya: 3y – x = 3.6 – 3 = 15
-    Titik R
R adalah perpotongan dari 2y + x = 20 dan y = 2x, maka subtitusikan saja:
2.2x + x = 20
5x = 20
x = 4 dan y = 2x = 8 ... titik R (4, 8)
Nilai obyektifnya: 3y – x = 3.8 – 4 = 20
-    Titik S
S adalah perpotongan dari 2y + x = 20 dan 2y = x, maka subtitusikan saja:
x + x = 20
2x = 20
x = 10 dan 2y = x, maka y = 5 ... titik S (10, 5)
Nilai obyektifnya: 3y – x = 3.5 – 10 = 5
Maka, nilai maksimumnya adalah 20 di titik R
JAWABAN: C

8.    Nilai minimum dari -2x + 4y + 6 untuk x dan y yang memenuhi 2x + y – 20 ≤ 0, 2x – y + 10 ≥ 0, x + y – 5 ≤ 0, x – 2y – 5 ≤ 0, x ≥ 0 dan y ≥ 0 adalah ...
a.    -14
b.    -11
c.    -9
d.    -6
e.    -4
PEMBAHASAN:
-    2x + y – 20 ≤ 0 atau 2x + y = 20
Untuk x = 0, maka y = 20 ... (0, 20)
Untuk y = 0, maka x = 10 .... (10, 0)
-    2x – y + 10 ≥ 0 atau 2x – y = -10
Untuk x = 0, maka y = 10 ... (0, 10)
Untuk y = 0, maka x = -5 .... (-5, 0)
-    x + y – 5 ≤ 0 atau x + y = 5
Untuk x = 0, maka y = 5 ... (0, 5)
Untuk y = 0, maka x = 5 .... (5, 0)
-    x – 2y – 5 ≤ 0 atau x – 2y = 5
Untuk x = 0, maka y = -2,5 ... (0, -2,5)
Untuk y = 0, maka x = 5 .... (5, 0)

Kita cari daerah hasilnya dengan menggambarnya:
-    titik A adalah titik potong antara 2x – y = -10 dan 2x + y = 20 maka titik potongnya:

      2x + 15 = 20
      2x = 5
      x = 5/2 ... titik A (5/2, 15)
Maka nilai dari fungsi obyektif  -2x + 4y + 6  adalah -2.5/2 + 4.15 + 6 = -5 + 60 + 6 = 61
-    titik B adalah titik potong antara x – 2y = 5 dan 2x + y = 20 maka titik potongnya:
2x + 2 = 20
     2x = 18
     x = 9 ... titik B (9, 2)
Maka nilai dari fungsi obyektif  -2x + 4y + 6  adalah -2.9 + 4.2 + 6 = -18 + 8 + 6 = -4
-    titik C (5, 0)
Maka nilai dari fungsi obyektif  -2x + 4y + 6  adalah -2.5 + 4.0 + 6 = -10 + 0 + 6 = -4
-    titik D (0, 5)
Maka nilai dari fungsi obyektif  -2x + 4y + 6  adalah -2.0 + 4.5 + 6 = 0 + 20 + 6 = 2
-    titik E (0, 10)
Maka nilai dari fungsi obyektif  -2x + 4y + 6  adalah -2.0 + 4.10 + 6 = 0 + 40 + 6 = 46
Sehingga, nilai minimalnya adalah -4
JAWABAN: E

9.    Nilai minimum f(x, y) = 3 + 4x – 5y untuk x dan y yang memenuhi –x + y ≤ 1, x + 2y ≥ 5 dan 2x + y ≤ 10 adalah ...
a.    -19
b.    -6
c.    -5
d.    -3
e.    23
PEMBAHASAN :
-    –x + y = 1
Jika x = 0, maka y = 1 ... (0, 1)
Jika y = 0, maka x = -1 ... (-1, 0)
-     x + 2y = 5
jika x = 0, maka y = 5/2 ... (0, 5/2)
jika y =0, maka x = 5 ... (5, 0)
-    2x + y = 10
Jika x = 0, maka y = 10 ... (0, 10)
Jika y = 0, maka x = 5 ... (5, 0)
Mari kita gambar daerah hasilnya:


-    Titik A adalah titik potong antara –x + y = 1 dan 2x + y = 10, maka titik potongnya:
2.3 + y = 10
     6 + y = 10
     y = 4 ... titik A (3,  4)
Maka, nilai obyektif  fungsi f(x, y) = 3 + 4x – 5y adalah: 3 + 4.3 – 5.4 = 3 + 12 – 20 = -5
-    Titik B adalah titik potong antara  –x + y = 1 dan x + 2y = 5, maka titik potongnya:

      x + 2.2 = 5
      x + 4 = 5
      x =1 ... titik B (1, 2)
Maka, nilai obyektif  fungsi f(x, y) = 3 + 4x – 5y adalah: 3 + 4.1 – 5.2 = 3 + 4 – 10 = -3
-    Titik C (5, 0)
Maka, nilai obyektif  fungsi f(x, y) = 3 + 4x – 5y adalah: 3 + 4.5 – 5.0 = 3 + 20 – 0 = 23
Jadi, nilai minimum fungsi adalah -5
JAWABAN: C

10.    Fungsi F = 10x + 15y dengan syarat x ≥ 0, y ≥ 0, x ≤ 800, y ≤ 600, dan x + y ≤ 1000 mempunyai nilai maksimum ...
a.    9.000
b.    11.000
c.    13.000
d.    15.000
e.    16.000
PEMBAHASAN:
-    x = 800
-    y = 600
-    x + y = 1000
     jika x = 0, maka y = 1000 ... (0, 1000)
     jika y = 0, maka x= 1000 ... (1000, 0)
  kita gambar daerah hasilnya:
-    titik A adalah titik potong antara y = 600 dan x + y = 1000, maka titik A adalah:
x + 600 = 1000
x = 400 ... titik A (400, 600)
Maka nilai obyektif  F = 10x + 15y adalah: 10.400 + 15.600 = 4000 + 9000 = 13.000
-    titik B (0, 600)
Maka nilai obyektif  F = 10x + 15y adalah: 10.0 + 15.600 = 0 + 9000 = 9.000
-    titik C adalah titi potong antara x = 800 dan x + y = 1000, maka titik C adalah:
800 + y = 1000
y = 200 .... titik C (800, 200)
Maka nilai obyektif  F = 10x + 15y adalah: 10.800 + 15.200 = 8000 + 3000 = 11.000
-    titik D (800, 0)
Maka nilai obyektif  F = 10x + 15y adalah: 10.800 + 15.0 = 8000 + 0 = 8.000
Sehingga nilai maksimumnya adalah 13.000
JAWABAN: C
11.    Seorang peternak ikan hias memiliki 20 kolam untuk memelihara ikan koi dan ikan koki. Setiap kolam dapat menampung ikan koki saja sebanyak 24 ekor, atau ikan koi saja sebanyak 36 ekor. Jumlah ikan yang direncanakan akan dipelihara tidak lebih dari 600 ekor. Jika banyak kolam berisi ikan koki adalah x, dan banyak kolam berisi ikan koi y, maka model matematikanya adalah ...
a.    x + y ≥ 20; 3x + 2y ≤ 50; x ≥ 0; y ≥ 0
b.    x + y ≥ 20; 2x + 3y ≤ 50; x ≥ 0; y ≥ 0
c.    x + y ≤ 20; 2x + 3y ≤ 50; x ≥ 0; y ≥ 0
d.    x + y ≤ 20; 2x + 3y ≥ 50; x ≥ 0; y ≥ 0
e.    x + y ≤ 20; 3x + 2y ≥ 50; x ≥ 0; y ≥ 0
PEMBAHASAN:
Ikan koki = x
Ikan koi = y
-    20 kolam untuk memelihara ikan koi dan ikan koki = x + y ≤ 20
-    Setiap kolam dapat menampung ikan koki saja sebanyak 24 ekor, atau ikan koi saja sebanyak 36 ekor. Jumlah ikan yang direncanakan akan dipelihara tidak lebih dari 600 ekor = 24x + 36y ≤ 600 atau 2x + 3y ≤ 50
-    x ≥ 0
-    y ≥ 0
JAWABAN: C

12.    Sebuah angkutan umum paling banyak dapat memuat 50 penumpang. Tarif untuk seorang pelajar dan mahasiswa berturut-turut adalah Rp1.500,- dan Rp2.500,-. Penghasilan yang diperoleh tidak kurang dari Rp75.000,-. Misal banyak penumpang pelajar dan mahasiswa masing-masing x dan y. Model matematika yang sesuai untuk permasalahan tersebut adalah ...
a.    x + y ≤ 50; 3x + 5y ≥ 150; x ≥ 0; y ≥ 0
b.    x + y ≤ 50; 3x + 5y ≤ 150; x ≥ 0; y ≥ 0
c.    x + y ≤ 50; 5x + 3y ≥ 150; x ≥ 0; y ≥ 0
d.    x + y ≥ 50; 5x + 3y ≤ 150; x ≥ 0; y ≥ 0
e.    x + y ≥ 50; 3x + 5y ≤ 150; x ≥ 0; y ≥ 0
PEMBAHASAN:
Pelajar = x
Mahasiswa = y
-    Sebuah angkutan umum paling banyak dapat memuat 50 penumpang = x + y ≤ 50
-    Tarif untuk seorang pelajar dan mahasiswa berturut-turut adalah Rp1.500,- dan Rp2.500,-. Penghasilan yang diperoleh tidak kurang dari Rp75.000,- = 1500x + 2500y ≥ 75000 atau 3x + 5y ≥ 150
-    x ≥ 0
-    x ≥ 0
JAWABAN: A

13.    Seorang ibu mempunyai 4 kg tepung terigu dan 2,4 kg mentega, ingin membuat donat dan roti untuk dijual. Satu donat membutuhkan 80gr terigu dan 40gr mentega, dan satu roti membutuhkan 50gr terigu dan 60 gr mentega. Jika ia harus membuat paling sedikit 10 buah donat maka model matematika yang sesuai adalah ...
a.    8x + 5y ≥ 400; 2x + 3y ≥ 120; x ≥ 10; y ≥ 0
b.    8x + 5y ≤ 400; 2x + 3y ≤ 120; x ≥ 10; y ≥ 0
c.    8x + 5y ≥ 400; 2x + 3y ≥ 12; x ≥ 0; y ≥ 0
d.    5x + 8y ≥ 400; 3x + 2y ≥ 12; x ≥ 0; y ≥ 0
e.    5x + 8y ≥ 400; 3x + 2y ≤ 12; x ≥ 10; y ≥ 0
PEMBAHASAN:
Donat = x
Roti = y
Soal di atas kakak rangkum dalam tabel berikut:
Mari kita ubah tabel di atas menjadi bentuk matematika:
-    80x + 50y ≤ 4000 atau 8x + 5y ≤ 400
-    40x + 60y ≤ 2400 atau 2x + 3y ≤ 120
-    Jika ia harus membuat paling sedikit 10 buah donat = x ≥ 10
-    y ≥ 0
JAWABAN: B

14.    Nilai minimal dari z = 3x + 6y yang memenuhi syarat;
4x + y ≥ 20, x + y ≤ 20, x + y ≥ 10, x ≥ 0, dan y ≥ 0 adalah ...
a.    50
b.    40
c.    30
d.    20
e.    10
PEMBAHASAN:
-    4x + y = 20
Jika x = 0, maka y = 20 ... (0, 20)
Jika y = 0, maka x = 5 .... (5, 0)
-    x + y = 20
jika x = 0, maka y = 20... (0, 20)
jika y = 0, maka x = 20 ... (20, 0)
-     x + y = 10
Jika x = 0, maka y = 10 ... (0, 10)
Jika y = 0, maka x = 10 ... (10, 0)
gambar  untuk mengetahui HP-nya:

-    Titik A (0, 20)
Maka nilai dari fungsi obyektif  z = 3x + 6y adalah: 3.0 + 6.20 = 120
-    Titik B adalah titik potong antara 4x + y = 20 dan x + y = 10, maka titik B adalah:
10/3 + y = 10
     y = 10 – 10/3
     y = 30/3 – 10/3
     y = 20/3 ... titik B (10/3, 20/3)
Maka nilai dari fungsi obyektif  z = 3x + 6y adalah: 3.10/3 + 6.20/3 = 10 + 40 = 50
-    Titik C (20, 0)
Maka nilai dari fungsi obyektif  z = 3x + 6y adalah: 3.20 + 6.0 = 60
-    Titik D (10, 0)
Maka nilai dari fungsi obyektif  z = 3x + 6y adalah: 3.10 + 6.0 = 30
Sehingga, nilai minimalnya adalah 30
JAWABAN: C

15.    Disebuah kantin, Ani dan kawan-kawan memayar tidak lebih dari Rp35.000 untuk 4 mangkok bakso dan 6 gelas es yang dipesannya, sedang Adi dan kawan-kawan membayar tidak lebih dari Rp50.000,-  untuk 8 mangkok bakso dan 4 gelas es. Jika kita memesan 5 mangkok bakso dan 3 gelas es, maka maksimum yang harus kita bayar adalah ...
a.    Rp27.500,-
b.    Rp30.000,-
c.    Rp32.500,-
d.    Rp35.000,-
e.    Rp37.500,-
PEMBAHASAN:
Harga 1 mangkok bakso = x
Harga 1 gelas es = y
Kalimat matematika untuk soal di atas adalah:
4x + 6y ≤ 35000
8x + 4y ≤ 50000
x ≥ 0
y ≥ 0
Karena bakso dan gelas tidak mungkin 0, maka kita langsung saja mencari titik potong antara garis 4x + 6y = 35000 dan 8x + 4y = 50000:

    8x + 4(2500) = 50.000
    8x + 10.000 = 50.000
    8x = 40.000
     x = 5.000
Maka, harga maksimum untuk 1 mangkok bakso = Rp5.000,- dan harga maksimum untuk 1 gelas es adalah Rp2.500
Jika kita memesan 5 mangkok bakso dan 3 gelas es, maka maksimum yang harus kita bayar adalah: 5(5.000) + 3(2.500) = 25.000 + 7.500 = 32.500
JAWABAN: C

 

 

Daftar Pustaka :

-         - https://www.studiobelajar.com/program-linear/

-      -   https://www.ajarhitung.com/2017/02/contoh-soal-dan-pembahasan-tentang_7.html

 

 

 

Komentar

Postingan populer dari blog ini

PENERAPAN TURUNAN: KEMONOTONAN, INTERVAL FUNGSI NAIK/TURUN, KECEKUNGAN DAN UJI TURUNAN KEDUA

MENGGAMBAR GRAFIK FUNGSI DENGAN TURUNAN PERTAMA DAN TURUNAN KEDUA

PERSAMAAN GARIS SINGGUNG PADA KURVA DAN GARIS NORMAL